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ABSTRACT
We introduce an approach to designing FPGA-accelerated middle-

boxes that simplifies development, debugging, and performance

tuning by decoupling the tasks of hardware-accelerator implemen-

tation and software-application programming. Rosebud is a frame-

work that links hardware accelerators to a high-performance packet

processing pipeline through a standardized hardware/software in-

terface. This separation of concerns allows hardware developers

to focus on optimizing custom accelerators while freeing software

programmers to reuse, configure, and debug accelerators in a fash-

ion akin to software libraries. We show the benefits of the Rosebud

framework by building a firewall based on a large blacklist and

porting the Pigasus IDS pattern-matching accelerator in less than a

month. Our experiments demonstrate that Rosebud delivers high

performance, serving ∼200 Gbps of traffic while adding only 0.7–7

microseconds of latency.

CCS CONCEPTS
• Hardware → Networking hardware; • Networks → Middle
boxes / network appliances.
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1 INTRODUCTION
FPGAs have become the preferred platform on which to deploy

in-network processing—middleboxes in particular—due to their

flexibility: middleboxes perform a wide variety of network func-

tions, many of which require hardware acceleration to function at
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today’s line rates. For example, intrusion detection systems (IDS)

and SD-WAN middleboxes [19] leverage hardware acceleration for

signature matching [21, 38] and supporting encrypted tunnels, re-

spectively. Critically, FPGAs—as opposed to ASICs—also make it

possible for vendors to update their middleboxes after deployment.

For example, release notes from Palo Alto Networks indicate they

have patched bugs in their deployed FPGA-based firewalls [20].

Unfortunately, FPGA development is inherently intricate and

laborious, and high-data-rate requirements only further complicate

matters. Network link speeds have increased past 100 Gbps while

FPGA clock rates remain plateaued, forcing middlebox develop-

ers to use resources more efficiently, which requires increasingly

intricate knowledge of specific FPGA hardware elements to opti-

mize their designs, including memory architecture, physical layout,

and I/O. Additionally, FPGA development cycles are much longer

than software because any change might break the logic that or-

chestrates packet processing, and there is much less visibility for

debugging. Hence, despite their performance benefits, FPGAs have

seen adoption for only a limited set of middlebox applications.

In this paper, we present the Rosebud framework for FPGA-based

middlebox designs that simplifies development and debugging. At

the heart of our framework is a new hardware abstraction we call

a Reconfigurable Packet-processing Unit (RPU). RPUs are reconfig-
urable blocks within the FPGA fabric where we can drop in cus-

tomized packet processing accelerators. RPUs are orchestrated in

software by FPGA-resident RISC-V CPUs, as opposed to difficult-

to-maintain hardware logic. Our key insight is that orchestration

can be offloaded to (relatively) slow RISC-V CPUs yet still deliver

overall line-rate processing. Additionally, this software-oriented

frameworkmakes it easier to debug and deploy accelerators because

it enables software-driven debugging tools and supports hardware

accelerator updates at runtime.

Realizing the RPU abstraction requires generalized supporting

hardware. Specifically, Rosebud load-balances packets across paral-

lel RPUs, implements a custom memory architecture to facilitate

high-speed packet processing, and provides an interface between

RPUs and the host. We implement Rosebud on top of a widely used

Xilinx FPGA board and show that its area and latency overheads

are marginal. We demonstrate that Rosebud can achieve 200 Gbps

for popular middlebox applications including intrusion detection

and firewalling. For instance, we used the Rosebud framework to

port the engine of a state-of-the-art FPGA-based IDS implementa-

tion [38] in less than 3 weeks, while adding runtime update capa-

bility to the IDS. Furthermore, we discuss how minor changes to

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

586

https://doi.org/10.1145/3582016.3582067
https://doi.org/10.1145/3582016.3582067
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582067&domain=pdf&date_stamp=2023-03-25


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Moein Khazraee, Alex Forencich, George Papen, Alex C. Snoeren, and Aaron Schulman

one of the current FPGA families can further reduce the overheads,

enabling additional slack for the developer and, in turn, simplify

the development process.

This work makes the following contributions:

• The RPU abstraction facilitates software-based development

and debugging for FPGA-accelerated middleboxes.

• We implement the Rosebud framework for load balancing

middlebox workloads across packet processors, enabling

coarse parallelism and no-pause reconfiguration.

• We demonstrate that these development tools can be used to

build 200-Gbps middleboxes much faster than with existing

tools by porting the hardware accelerators of a state-of-the-

art IDS to Rosebud, and making a firewall, in only one month.

Rosebud is mainly implemented in Verilog with all open-source IP

cores; we will release it as open source at the time of publication.

2 CHALLENGES
FPGAs have evolved to include features that make them attractive

for high-speed middlebox applications, but these features require

developers to forgo familiar software development paradigms for

highly optimized FPGA hardware development. In this section we

outline the key challenges developers face when implementing

FPGA middleboxes and briefly describe how Rosebud addresses or

alleviates them by empowering developers to focus on the acceler-

ator design for their desired functionality.

2.1 Tailoring Logic to FPGA Platforms
Three features allow FPGAs to achieve line rate processing, but also

increase the barrier to entry for developers. First, FPGA vendors

tailor FPGAs for efficient high-speed packet processing. FPGAs now

contain ASIC-like hardened logic for 100-Gbps Ethernet and PCI

Express PHY/MAC. They also contain larger (e.g., 8×) memory cells

to enable buffering multiple packets, providing needed slack for

complex, long-running packet processing tasks (e.g., managing dif-

ferent packet sizes) [32]. However, these network-specific resources

are provided as bare-bones hardware; middlebox developers need

to understand exactly how they work and implement glue logic

from scratch to meet their specific needs.

Second, manufacturers overcome FPGA clock-speed limitations

by boosting fabric capacity (e.g., logic, memory, and I/O) through

technologies that increase transistor density on FPGA chipsets [26]

and employing multiple, interconnected FPGA dies. Middlebox de-

velopers can use these additional resources to increase throughput

by parallelizing their implementations. In order to put available

resources to best use, however, developers must provide hints to

the heuristic-based FPGA development toolchain to help it achieve

a feasible physical layout in the FPGA’s fabric.

Third, modern FPGAs can reconfigure a portion of their fabric

while the rest of the logic continues to operate, enabling runtime

updates. This technique, known as partial reconfiguration (PR), is

well-suited for middlebox developers as it allows them to modify

packet processing accelerators at runtime without any downtime.

PR also enables developers to reach a full implementation by craft-

ing a portion of the design as a static part, and adding on to the

rest of the design incrementally. However, PR regions constrain the

selection of the configurable regions in the fabric. Excluding these

regions from the static part of the design also reduces the flexibility

of resource selection and lowers total utilization. PR regions further

require sophisticated border logic to avoid clock-frequency reduc-

tion, in addition to extra logic to ensure that the system remains

stable during the reconfiguration. It requires a knowledgeable de-

veloper to minimize these overheads.

Rosebud hides the complexity of using platform-specific hard-

ware by integrating them within the Rosebud runtime. Rosebud

lays out partially reconfigurable regions based on the middlebox

application’s needs and provides an optimized packet-distribution

subsystem to fully addresses die-boundary-crossing challenges.

2.2 Orchestrating Parallel Units
While the increased real estate of modern FPGAs makes it possible

to parallelize hardware accelerators to implement line-rate process-

ing, it requires careful orchestration of the parallel units. There are

two key challenges: (1) Different tasks take different amounts of

time. For example parsing a packet’s header takes less time than

finding a string in the payload. (2) Different tasks might also have

different access patterns. For example, header processing uses a

random access pattern and string matching uses streaming access.

Designing the control logic to properly orchestrate the data flow

among different accelerators is crucial—and one of the most fragile

parts of the design, as a single cycle error in the control can cause

corrupted data which is hard to track. Handling corner cases and

exceptions further complicates this control logic.

Orchestration constraints further complicate updates to accel-

erators and limits reuse of third-party accelerators. A change to a

single accelerator might break the orchestration among the accel-

erators and require multiple, long compile and debugging cycles to

update the orchestration logic. Similarly, reusing third-party accel-

erators requires adapting their data flow and capabilities to match

the rest of the design; designers are often better off reimplementing

their own accelerators. Moreover, standardized hardware interfaces,

such as AXI or AXI Stream [35], only provide connection for the

accelerators; while separate orchestration logic is still required.

Rosebud enables use of software for fine-grained orchestration

control. Our key insight is that orchestration tasks are relatively

lightweight compared to accelerator operations, so they can be

implemented in software running on wimpy cores. This also makes

debugging orchestration easier as it can be scaffolded using familiar

software-development tools.

Rosebud also supports course-grained parallelism by distributing

packet processing across multiple parallel RPUs. Additionally, it

provides a generic messaging system to address the communication

needs among these parallel units.

2.3 Development and Debugging
FPGA development is slow. FPGA toolchains take hours to produce

a bitstream for the FPGA image, and they offer limited debugging

visibility (e.g., FPGA developers frequently debug their designs

by looking at simulation waveforms); both significant limitations

compared to software-based middleboxes that benefit from x86

programming and debugging tools. Some of these costs can be

mitigated by simulating FPGA designs before building them, but
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Figure 1: Overview of the RPU abstraction

simulations run much slower than real time—a few thousand pack-

ets can take on the order of hours to simulate, much slower than the

millions of packets per second processed at operational line rates.

Run-time debugging, which often is necessary because bugs can

be missed in simulation, requires implementing extra debugging

logic—with additional development iterations to hunt down the

bug—which further prolongs development.

FPGA hardware development languages (i.e., HLS) have the po-

tential to bridge the gap between software and hardware develop-

ment; however, at its core HLS is just a tool that generates Verilog,

so the developer needs to be fully aware of hardware restrictions

and orchestration among different hardware modules. Furthermore,

HLS designs are typically less performant than hand-crafted Ver-

ilog [16]. Also, HLS does not support software-like debugging tools,

such as break points or memory dumping. It should be noted that

developers can still use HLS-generated accelerators inside Rose-

bud’s packet processors for specific accelerator implementations,

but need not employ it for the entire middlebox implementation.

In Rosebud, use of software within FPGA at run time significantly

simplifies the debugging process.

3 PROCESSING ABSTRACTION
We overcome the challenges presented in the previous section by

introducing a new abstraction for middlebox packet processing ac-

celerated by FPGA hardware, the Reconfigurable Packet-processing

Unit (RPU). The RPU abstraction achieves the following goals: (1) re-

duce the required expertise needed to use networking-specific FPGA

resources, (2) provide a way to incrementally update hardware ac-

celerators and their orchestration, and (3) provide developers with

visibility into hardware at runtime for debugging.

3.1 Reconfigurable Packet-processing Unit
An RPU consists of a RISC-V core connected to custom hardware

accelerators, all residing inside a partially reconfigurable FPGA

block. Packets are distributed across the RPUs using a customiz-

able load balancer (LB). The software within each RPU is in charge

of managing hardware accelerators to process packets; i.e., it or-

chestrates packet processing by invoking hardware accelerators

as it would call functions in software. RPUs can be programmed

using familiar C-based software abstractions for packet process-

ing, such as packet descriptors for moving packets using a Direct

Memory Access (DMA) engine. Figure 1 shows an overview of

this abstraction. Lightweight processing, such as header parsing,

can be implemented in software alone. To overcome the overhead

introduced by the RPU’s software-based abstraction and to scale

the performance of hardware accelerators, Rosebud implements a

customized hardware load balancer that can be tailored to match

the middlebox’s workload. The user can set the policy used by the

LB unit, for example round robin, hash-based, or even a policy

designed specifically for their target middlebox application.

The RPU abstraction provides all of the benefits of the software

development cycle. For example, the software running on the RISC-

V cores can inject or drop packets to see if a bug is being caused

by them. It also can communicate with a host to provide samples

of such packets or implement breakpoint behavior for certain con-

ditions. Therefore, developers can identify and mitigate runtime

issues by monitoring the state of accelerators and raising faults that

either are handled directly on the software, or log errors and dump

state, if desired on a per-packet basis, for a developer to inspect.

RPUs can even handle doing this on a per-packet basis. In addition,

software running on the host can dynamically update the hardware

accelerators in an RPU at runtime using PR, and handle the required

state transition in software, eliminating the need to design logic

specifically to restore state after reconfigurations.

3.2 Software-Based Development Environment
Rosebud enables a developer to only focus on implementing their

middlebox in a single RPU before they scale it to run at line-rate.

The steps a developer needs to take to go from an idea to a full

middlebox is as follows: (1) Write or choose their hardware ac-

celerator and connect it within RPU. (2) Write the accompanying

software to support the accelerator and compile it alongside the

provided Rosebud libraries. (3) The developer can then test their

entire software and hardware implementation in an RPU with a

Python-based simulation framework. (4) After verifying the desired

functionality, they can then build their RPU with the FPGA devel-

opment toolchain. The Rosebud framework’s supporting hardware

will already be placed and routed, including a block available for a

custom LB module. (5) Finally, when the FPGA bitstream is ready,

they can use Rosebud host-side C library and driver to load software

and any constant data (e.g., lookup tables) to the RPU’s memory

to be shared by the RISC-V cores and accelerators. This process is

further detailed for the case study in Appendix A.

For developers, all supporting hardware is pre-made and pre-laid-

out physically on the FPGA platform by Rosebud, allowing them

to focus on the implementation of customized packet-processing

software and hardware for their middlebox. For example, the packet-

distribution system crosses die boundaries in a multi-die FPGA

while still meeting high performance and low latency constraints.

The design of the supporting hardware is described in Section 4.

3.3 Flexible Accelerator Orchestration
RPUs provide a well-defined interface for software and hardware

to interact: the memory interface between the core and the accel-

erators. For instance, software can tell an accelerator what part

of a packet to operate on by passing a pointer—using memory-

mapped I/O—to the data’s location in the memory shared with the

accelerators. As long as hardware and software follow the same

memory-based interface, either can be changed without affecting

the operation of the other. This effectively brings the commonly

used embedded systems programming interface to FPGA middle-

boxes. The key insight that makes the RPU abstraction possible
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Figure 2: Overview of the Rosebud framework

is the fact that orchestration takes much less time than the time

it takes to process packets with hardware accelerators. However,

achieving line-rate with this this abstraction requires a separate

high-bandwidth packet distribution subsystem (Section 4.3).

3.4 Software-like Debuggability
An additional benefit of the RPU’s shared memory architecture is

the ability to support software-driven hardware debugging. For run-

time debugging, the host can communicate to different components

of Rosebud. In particular, it has access to memory of each RPU to

read and modify the state of accelerators, or even modify how the

packets are being processed. The RPU achieves this by allowing

developers to pause and reload software and memory in each RPU

during runtime. Furthermore, the framework offers functionality

similar to a breakpoint: RISC-V cores can set status registers that

are readable by the host, and when those status registers change,

they RPUs can simultaneously store some data in host memory, and

enter a spin wait for the host to debug the problem. For example,

if the packet distribution part of the Rosebud framework hangs,

software on the RISC-V can detect the hang using internal timer

interrupt, and send its state to the host. Furthermore, at runtime the

host can send a poke interrupt to an RPU to tell it to stop processing

packets, then the host can read the state of both the accelerators

and RISC-V core by dumping the entire RPU shared memory.

Rosebud’s architecture also supports simulating an entire RPU’s

operation, with or without the distribution system, avoiding the

need to lay out a full design and deploy it to FPGA. We build a

Python-based test bench framework based on Cocotb [6]. Develop-

ers can then link in the hardware accelerators and software they

want to test, and run full simulation of the RPU’s operation. An-

other benefit of using Python is availability of several libraries, such

as Scapy [3] to generate test cases. We also provide a Python library

with the same API available between host and RPU.

4 HARDWARE DESIGN
In this section we describe the hardware components in the Rose-

bud framework that enable the RPU abstraction. Figure 2 shows an

overview of these components, and which part of the abstraction

they support. We start by describing the hardware architecture

of the RPU itself, namely the design of the shared-memory sub-

system that enables seamless high-speed communication between

the RISC-V core and the hardware accelerators. Then we describe

the customizable, hardware load balancer that distributes packets

across parallel RPUs to achieve line rates. Finally, we describe the

high-rate packet switch that distributes packets to and from the

external interfaces and host, and across the RPUs.

 High latency (large)Low latency (small)

Packet slots

Scratchpad

Hardware Accelerators

Broadcast messages

Stack

Packet headers

RPU Interconnect DMA (to packet distribution subsystem)

RISC-V

Local Memory

imem

Memory mapped I/O

Figure 3: Memory subsystem in each RPU

After introducing each component, we briefly overview the in-

terface for the host to configure that component during runtime,

if any. We also describe how we leverage features of middlebox

applications to implement each component in a performant yet

resource-efficient manner, without a significant decrease in per-

formance or increase in latency over fully customized FPGA im-

plementations. The components described in this section are all

written in Verilog for Rosebud and come pre-laid out—and placed

for the static portions—in the FPGA logic fabric.

4.1 RPU Architecture
Each RPU contains two processing components, a RISC-V core and

a set of accelerators. The RISC-V core and accelerators communicate

over two memory-based interfaces: (1) a basic memory-mapped

I/O for configuring and reading accelerator registers, and (2) a

shared-memory subsystem that allows both the RISC-V core and

accelerators to access and modify packets that are currently being

processed. This shared memory also holds the state of both the

RISC-V core (e.g., stack) and accelerators (e.g., scratch pad), as well

as the instructions that the RISC-V core is executing.

We observe that accelerators and RISC-V cores have different

ways of accessing memory. Accelerators usually read packet pay-

loads in a streaming manner (e.g., word-by-word in sequence) to

process the entire payload in order, and perform compute-heavy—

i.e., relatively time-consuming—processing. As a result, accelerators

benefit from using larger, higher-latency memories (e.g., Xilinx’s

“Ultra-RAMs”) that can be pipelined to hide the latency while keep-

ing up with line-rate throughput.

In contrast, RISC-V cores have more random accesses; for exam-

ple parsing a header and deciding on the next field to read based

on the output of that first read. This random read pattern is inef-

ficient to support with higher-latency memories. Fortunately, the

cores need to access the packet headers which require less data.

As a result, we can copy the packet header and use smaller, lower-

latency memories (e.g., BRAMs) for the RISC-V cores. This contrast

provides an opportunity to design a tailored memory architecture.

Figure 3 shows an overview of the RPU’s memory architecture:

we split the memory space into three parts. First, there are instruc-

tion and data memories of the RISC-V core (left) which are small

and can be accessed within a cycle. Then, there is the large packet

memory (center), where the packets arrive at from the packet distri-

bution subsystem. This memory is shared between the RISC-V and

accelerators, and can be used as a scratch pad. Finally, accelerators

can have local memory loaded by the packet distribution subsystem

for lookup tables or similar (right).
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An interconnect module provides the interface between the RPU

and the rest of Rosebud that distributes packets to the RPUs (Sec-

tion 4.3). This module informs the RISC-V core about arriving pack-

ets by giving it descriptors, and the core can send packets back to

the packet distribution framework by giving descriptors with the

desired destination. The module also provides a control interface

from the host to the RPU, for example, it can read and write the

status registers, and interrupt the RISC-V.

The DMA engine inside the interconnect module has access to

all these memories. This DMA engine is customized to copy an

incoming packet to the shared packet memory, and also copy the

packet header into the local RISC-V memory to parse the header

with low latency. DMA engine can also be used to initialize the

memories from the host—before booting the RISC-V core—to load

lookup tables, or read them back for debugging purposes.

One limitation with FPGA memories is that they only have two

ports. To avoid contention, local RISC-V memories have a dedicated

port to the core, and the other port is used for the DMA engine to

exchange packet-header data and facilitate low latency communi-

cation among RPUs (see Section 4.4). Since cores sparsely access

the packet memory—e.g., for table look-up once per packet or for

change a value in packets header—we share that port with the DMA

engine and give higher priority to the core. This frees up the other

packet memory port for the accelerators to have exclusive access.

Finally,both ports of the local accelerator memory are dedicated

to the accelerators at runtime, and only during boot or readback—

where the accelerators are not active—the DMA engine can use one

of the ports. For accelerator configuration or result readback, the

RISC-V cores uses a separate memory mapped I/O (MMIO) channel

to read/write the accelerators’ registers.

The RPU resides entirely inside a PR region, making it possible

to swap it during run time. The RISC-V cores could have been

implemented outside the RPU as part of the supporting architecture.

However, due to the need for extra registers on the border of a

reconfigurable region, it would increase the latency of RISC-V to

the shared memories and accelerators. Moreover, by placing the

RISC-V within the RPU, it leaves the option open for the developer

to customize the core and tailor the core capabilities to their needs.

Interface between the host and the RPUs. We developed an API

to provide the host-based control of RPUs (details in Section 3.2).

In addition, there is an interface to use the partial reconfiguration

process to load hardware in an RPU. First the host tells the LB not

to send data to the specific RPU, then it waits for the packets within

the RPU to drain. Next, it boots the RISC-V core in the updated

RPU, and finally tells the LB to resume sending data to the RPU. We

measured the time to pause, load the new bit file, and boot a new

RPU, and it takes 756 milliseconds on average (across 320 loads).

4.2 Customizable Packet Load Balancer
For middleboxes, there is a clear load balancing opportunity to help

scale the packet processing performance by using RPUs in parallel.

Indeed, middleboxes often have load balancers that split the load

between parallel servers. Use of a load balancer within an FPGA

middlebox design results in (1) less burden of parallelism on the

developer to achieve the desired performance, or in other words

less load per RPU, (2) it enables laying out partially reconfigurable

regions once and removing that burden from the developer, and

(3) it enables reconfiguring one of the RPUs during runtime by

configuring the LB to offload traffic to other RPUs. Developers

can customize the LB policy to the application’s requirements, for

instance one that assigns a new packet to the least-loaded core.

We provide TCL scripts to make faster incremental builds when

replacing the LB in the base FPGA image.

We leverage the packet-based data flow in middleboxes to sim-

plify the developer’s design of the LB. In particular, the LB refers to

packet memory in RPUs by a descriptor (slot number). Therefore,

LB is only in charge of the load balancing policy and enforces it

by labeling a packet with target RPU and memory slot. These slots

are configured by the software running on RISC-V during boot,

where it allocates some slots for packets and notifies the central

LB about the number of slots and their maximum size. Similarly,

communication between host DRAM and RPUs is also packetized,

using a different slot number, i.e., DRAM tag.

After the LB has assigned a destination core for a packet, and

that packet arrives at an RPU, the RPU’s interconnect (described

in Section 4.1) notifies the RISC-V of an active descriptor. When

sending out a packet, a RISC-V core has two options: it can ask

the RPU interconnect to send it out directly, or it can tell the LB

which slot is ready to be sent, and the LB will automatically send

the transmit command to the interconnect. In both cases, the in-

terconnect notifies the LB about slot being freed after it is sent

out. By splitting the control functionality into a central part—the

LB—and a distributed part—the interconnect, the slot abstraction

also improves scalability of the system.

Interface between the host and LB. There is a read/write channel
going from the host to the LB, with 30 bits of separate address space

for writing and reading 32 bit words. The user can fully customize

this channel to configure and control their LB during runtime. For

instance, the developer uses this channel to select which cores are

used for incoming traffic and which cores are disabled. They also

can read the number of available slots inside the LB per RPU and

other status registers. These data are helpful to detect freezes and

starvation. Also the developer can use the host channel to prepare

the LB for load of a new RPU by flushing the slots in the LB.

4.3 Packet Distribution
Figure 4a shows an overview of how packets flow from interfaces

to RPUs. Incoming packets arrive at physical or virtual Ethernet

interfaces, where they are assigned a destination RPU by the LB.

There are two other sources and sinks interfaces for packets: (1)

Host DRAM: used to move data over PCI-e to and from the host,

and (2) loopback: used when an RPU wants to send a full packet

to another RPU (Section 4.4). These two interfaces typically carry

much less traffic than network-facing interfaces, so they can share

the same infrastructure without sacrificing throughput.

As shown in Figure 4a, to make the packet distribution subsys-

tem more resource efficient, switching is performed in two stages:

first among four RPU clusters and then among the RPUs. This is

to achieve the required performance with as little FPGA fabric

resource utilization as possible. We implement a separate switch

for each RPU cluster that has full throughput incoming, and four
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(a) Data distribution flow (b) Control message flow

Figure 4: Packet distribution and control flow in Rosebud

links running at 1/4th throughput outgoing. By using separate FI-

FOs for each incoming link inside this switch, the switch achieves

non-blocking forwarding: each FIFO provides bit-width conversion

without blocking the other incoming interfaces. Thus, the only

necessary arbitration is when two input interfaces send to the same

RPU. We use round-robin-policy arbitration by default; but it can

be replaced with priority policy if desired. Also these switches are

unidirectional and we have separate set of switches for incoming

and outgoing traffic, not to block each other.

We were able to reduce the bit-width on the switches to each

RPU by leveraging the fact that middleboxes do not have strict

latency requirements. We can already tolerate latency of packets

going over the PCIe bus in CPU-based middleboxes, as this latency

is in the order of microseconds and it is negligible compared to

packets traversing the Internet, which incurs latency on the order

of milliseconds. Therefore, in Rosebud we only need to dedicate

moderate bandwidth for data communication to each RPU to reduce

the resource requirements of the packet distribution system, while

still incurring less latency than going over the PCIe bus.

Each RPU’s interconnect is in charge of address handling and

interfacing the packet distribution switch with the RISC-V core, as

well as communicating to the LB and the host DRAM access man-

ager. This coordination is facilitated by separate control channels

for messages among RPUs and the LB, as well as request messages

to host DRAM access manager. These control channels are sepa-

rated from the data channels to avoid resource contention among

them, and are shown in Figure 4b.

Interface between the host and packet distribution subsystem. Hosts
can read the status counters on all of the physical and virtual Eth-

ernet interfaces, as well as each RPU. These counters contain the

number of transferred bytes, frames, drops, or stalled cycles. They

can shed light to how packets are going through the system, for

instance how the LB is distributing packets. Therefore, they can

reveal to the developer where the bottlenecks are located.

4.4 Inter-RPU Messaging Subsystem
Middlebox applications that require stateful packet processing

might need to share state between parallel RPUs. This can be cate-

gorized into two types of message passing: (1) copying a packet or

portion of memory to another RPU, or (2) sending a short message

to update the state of the other processors (e.g., table). In a CPU-

based middlebox, both of these can be implemented through cache

coherency, but due to limited memory and the low clock rate on

FPGAs, shared caches are inefficient and impractical to implement.

In Rosebud, we design tailored messaging systems for these types

of communication to make them more resource efficient.

For sending full packets between RPUs, we provide a loopback

module that can route a packet between any two RPUs. The RISC-V

cores can ask the LB for a packet slot from a destination RPU, and

the packet can be transmitted using the same packet distribution

subsystem. Inter-RPU packet messaging can also be used to im-

plement a processing chain of heterogeneous RPUs with different

accelerators and capabilities.

For sending short messages between RPUs, instead of using a

full fledged coherent cache (with complex eviction and owner core

capabilities) Rosebud features a simplified broadcast messaging

system. A portion of memory is semi-coherent, where a write to

this portion will eventually be propagated to all the other cores, and

they all receive the message at the exact same time. This broadcast

system is shown in Figure 4b. This design incurs less contention

and overhead than a coherent cache. We further enable the use

of interrupts to efficiently notify the receiving RPU regarding a

message. The RISC-V program can configure the interrupts to be

masked based on the target address. This can be used to send larger

messages, where only the last word causes an interrupt, or to sepa-

rate data and control messages. Rosebud further provides a FIFO

for these notifications so as to not lose or reorder them.

5 IMPLEMENTATION
We implemented Rosebud on a Xilinx Virtex UltraScale+ FPGA

VCU1525 board with an XCVU9P FPGA chip, shown in Figure 5

and Figure 6. There are 16 and 8 RPU versions respectively, where

each RPU (cyan) has its own independent PR allocation as well as

an RPU interconnect (purple) next to it for communicating to the

rest of the system. We used the VexRISC-V
1
as the core within each

RPU. VexRISC-V is a small open source 32-bit RISC-V core with a

1
https://github.com/SpinalHDL/VexRiscv
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Figure 5: Base FPGA layout with 16 RPUs

Table 1: Base resource utilization for 16 RPUs
Component LUTs Registers BRAM URAM DSP

Single RPU 4541 (0.4%) 3788 (0.2%) 24 (1.1%) 32 (3.3%) 0

Remaining (PR) 23298 (2.0%) 52132 (2.2%) 12 (0.6%) 0 168 (2.5%)

LB 8221 (0.7%) 22503 (1.0%) 0 0 0

Remaining 70163 (6.0%) 135897 (5.8%) 144 (6.7%) 48(5.0%) 576 (8.4%)

Single Interconnect 2793 (0.2%) 2955 (0.1%) 0 0 0

CMAC 6397 (0.5%) 14849 (0.6%) 0 18 (1.9%) 0

PCIe 41526 (3.5%) 63742 (2.7%) 110 (5.1%) 32(3.3%) 0

Switching 86234 (7.3%) 123654 (5.2%) 48 (2.2%) 64(6.7%) 0

Complete design 259713 (22.0%) 332636 (14.1%) 542 (25.1%) 626 (65.2%) 0

VU9P device 1182240 2364480 2160 960 6840

5-stage pipeline that is optimized for FPGAs. It also can be easily

modified to select the developer’s desired capabilities.

We also allocated another larger PR block for the LB (blue).

Our current load balancer implementations are basic and require

very few resources, and the rest of the reserved area is empty

for potentially a more sophisticated user LB. The main role of

partial reconfigurability for the LB is to isolate its placement and

routing, so if parameter updates to the LB are not sufficient, a

developer can easily replace the LB. We do not support partial

reconfiguration of LB during runtime, as it requires a backup LB

module to switch to for the duration of the reconfiguration. The

backup LB adds a significant resource overhead, while for many

middlebox applications updates to the policy can be sufficiently

expressed through passing parameters during runtime.

The physical Ethernet interfaces on the FPGA board are con-

nected via MAC modules and FIFOs (green). The PCIe modules

(yellow) are used for connecting to the host for control, access-

ing host DRAM, and providing a virtual Ethernet interface. Most

of these components are provided by the Corundum open-source

100 Gbps virtual network interface [9], which includes a driver for

the Linux networking stack, enabling Rosebud’s operation as a NIC.

Finally, the packet distribution subsystem (orange) is connected

to RPU interconnects (red lines show a few of these connections).

The widest switches are 512-bits wide and the narrowest switches

are 128-bits wide, they provide max throughput of 128 Gbps and

32 Gbps respectively. There is incurred overhead for switch arbi-

tration that reduces their peak performance, but still the wider

switches operate above 100 Gbps. We had to add several physical

constraints to help Vivado (Xilinx’s FPGA development toolchain)

in placement of the switches, as they are wide and span across the

FPGA’s dies. After these optimizations, the switching infrastructure

uses 54.7% of the FPGA’s die crossing registers.

Figure 6: Base FPGA layout with 8 RPUs

Table 2: Base resource utilization for 8 RPUs
Component LUTs Registers BRAM URAM DSP

Single RPU 4640 (0.4%) 3806 (0.2%) 24 (1.1%) 32 (3.3%) 0

Remaining (PR) 59521 (5.0%) 125074 (5.3%) 90 (4.2%) 32 (3.3%) 384 (5.6%)

LB 7580 (0.6%) 22076 (0.9%) 0 0 0

Remaining 106436 (9.0%) 208324 (8.8%) 180 (8.3%) 96(10.0%) 648 (9.5%)

Single Interconnect 2964 (0.3%) 3051 (0.1%) 0 0 0

CMAC 6396 (0.5%) 14851 (0.6%) 0 18 (1.9%) 0

PCIe 41494 (3.5%) 63734 (2.7%) 110 (5.1%) 32(3.3%) 0

Switching 48402 (4.1%) 68890 (2.9%) 36 (1.7%) 32(3.3%) 0

Complete design 164699 (13.9%) 224404 (9.5%) 338 (15.7%) 338 (35.2%) 0

VU9P device 1182240 2364480 2160 960 6840

Tables 1 and 2 show the utilization breakdown of the 8 and 16

RPU Rosebud runtimes for each of the main components, as well

as the average resource utilization per RPU (without any acceler-

ators). The table also shows the average remaining resources per

PR block for each RPU, as well as the remaining resources in the

LB block when using a round robin LB. Since the 8 RPU design has

less arbitration logic than the 16 RPU design, we see less resource

utilization. Across all implementations with all combinations of

accelerators, including the case study accelerators, the maximum

routing utilization in vertical or horizontal direction is 17%, and

typically it is around 12%. The only hard IP blocks are the SERDES,

PCIe and Gigabit CMAC; the rest are our own open source IP. We

are able to meet timing at 250 MHz for all designs.

6 EVALUATION
Next we evaluate the performance of the Rosebud framework. We

ran several benchmarks to understand the limitations of different

subsystems within Rosebud.

Experiment setup. Our experiments are conducted using a host

with an Intel(R) Xeon(R) CPU E3-1230 V2 running at 3.3 GHz and

a PCIe Gen 3 x16 expansion bus. We installed two separate Xilinx

Virtex UltraScale+ FPGA VCU1525 boards into the PCIe bus, one

serves as a traffic source/sink, while the other runs the system

under test. Both ports of each FPGA are connected to the other

FPGA, each with a 100-Gbps QSFP+ cable, totalling to a bandwidth

of 200 Gbps. We use a round robin LB for this evaluation, as well

as optimized bare-metal C code on the RISC-V processors to isolate

software overhead from the overhead inherent to the framework.

6.1 Forwarding Throughput
We tested the forwarding performance of the framework as a func-

tion of packet size. We consider packet sizes in the range of 64 to
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(b) Packet forwarding with 8 RPUs (c) Round-trip latency

Figure 7: Packet forwarding throughput with (a) 16, and (b) 8 RPUs, and (c) round-trip latency.

8192 bytes by powers of two (excluding the 4-byte FCS), including

the worst case of 65 bytes and the typical datacenter MTU packet

sizes of 1,500 and 9,000 bytes. We sent packets from the tester FPGA

interfaces and run a simple forwarder program on the RPUs to ob-

serve what portion of the packets are successfully forwarded. We

use a 16 RPU design for the packet generation, and it saturates

the maximum line rate of each packet size on the 200 Gbps link,

other than for 64-byte packets which achieves 88% of the maximum

rate at 200 Gbps (or 250 MPPS), and for 65-byte packets which

achieves 89% of the maximum rate at both 100 Gbps and 200 Gbps

(or 125 MPPS and 250 MPPS, respectively).

Figure 7 (a) and (b) show the maximum forwarding rate as a

function of packet size for 16 and 8 RPUs respectively. The maxi-

mum theoretical effective rate is depicted as the dotted lines. Our

16 RPU implementation can forward at 100 Gbps for every packet

size other than 64 bytes, where it achieves 88% of maximum rate (or

125 MPPS). For 200 Gbps, the 16 RPU implementation can forward

at line rate for all packet sizes (note: below 128-byte, packets have

reduced packet generation performance). For 8 RPUs, we perform

similarly for 100 Gbps, but packets have to be at least 1024 byte

packets to forward at the full 200 Gbps line rate.

The performance drop for 64 and 65-byte packets is primarily

due to the RISC-V software latency in the RPUs. For instance, the

minimum time for our packet forwarder to read a descriptor and

send it back is 16 cycles. Therefore, each RPU forwards a packet

every 16 cycles, and with 16 RPUs we can hit at most 250 MPPS

(equal to the clock rate). Similarly, with 8 RPU design we reach a

maximum packet rate of 125 MPPS. For the single port forwarding,

our distribution subsystem is limited to 125 MPPS per incoming

port limitation, which can be improved in the future.

6.2 Forwarding Latency
Next, we measured Rosebud’s forwarding latency. Namely, the

round trip time (RTT) from the traffic generator, through the FPGA

under test, and back to the generator. To measure the latency, the

packets are time-stamped just before leaving the packet generator,

and the time is recorded upon arrival of them after the loopback.

Figure 7c shows themeasured latency for different packet sizes, both

under low-load and maximum-load scenarios. The primary source

of the measured delays is serialization. When a packet arrives at the

FPGA and when it leaves the FPGA, MAC FIFOs add serialization

latency at the line rate of each interface (i.e., 100 Gbps). Rosebud

introduces additional serialization latency at 32 Gbps due to the

fact that packet is fully loaded into each RPU’s shared memory

before the RISC-V core is notified. The packets also have to be fully

serialized on the way out of the RPU after the descriptor is released.

The dotted line in Figure 7c shows the computed serialization delay

according to the theoretical minimum latency given serialization

(Equation 1). The 0.765µsec in this equation corresponds to the

minimum latency of packet forwarding through Rosebud, measured

for the smallest packet size.

Est . latency (µs) = (size ∗ 8 ∗ ( 2

100
+ 2

32
)/1000) + 0.765 (1)

Since LB tracks the available slots in the RPUs, any packet past

the LB can be absorbed by RPUs. Therefore, high load introduces

only marginal additional latency, which likely comes from packets

not being uniformly distributed between the two outgoing inter-

faces. The only exception is for 64-byte packets, where our packet

generator can supply at a higher rate than what our packet for-

warder can support, causing the receive FIFO to become full in

steady state and add 32.8µsec of additional latency.

6.3 Inter-RPU Messaging Performance
Finally, we measured the throughput of the inter-RPU loopback

messaging system. Our implementation only uses a single 100-

Gbps loopback port, since sending packets among cores for every

incoming packet is not the intended design. To test the performance

of this loopback port, we implement a two-step forwarding system:

we assigned half of the RPUs to be recipients of the incoming traffic,

and then each of these RPUs forwards packets to its corresponding

RPU in the other half, and finally that core returns the packet to

the link. We achieve 60% and 61% maximum throughput for the

smallest packet sizes 64 Bytes and 65 Bytes respectively. Mainly

Rosebud is bottlenecked by the destination RPU header having to

be attached to each packet. For packet sizes larger than 128 bytes,

the system can keep up with the full 100-Gbps line rate.

We also performed two tests to measure the latency of broadcast

messages: one with a fixed-rate of sparse messages, and one where

each RPU is trying to send as many messages as fast as it can.

We time-stamp each message by writing the time-stamp value in

the broadcast region, and upon arrival compare the current time

against the transmit time. In the normal scenario of sparse messages,

we observed a latency between 72 to 92 ns. When trying to send

as many messages as possible—which is not the intended use for
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this communication channel—we observe 1,596–1,680 ns of latency

for the design with 16 RPUs. This latency mostly comes from the

18 FIFO slots in each RPU—16 from actual FIFO and 2 from PR

registers—which can be sent out every 16 cycles due to round-robin

arbitration among cores (or every 8 cycles for the design with 8

RPUs). This accounts for 1,152 ns of this latency: 16×18 cycles, each

at 4 ns. A write to the broadcast memory region will be blocked

until there is room in the FIFO. The rest of the latency is due to

FIFOs and registers in the packet distribution subsystem and the

RISC-V software having slight variations.

7 CASE STUDIES
In this section we demonstrate how Rosebud can reduce develop-

ment effort and time to build FPGA-accelerated middleboxes that

can run at 200 Gbps. We show this with two case studies.

Case study 1: Porting Pigasus to achieve 200G. For our first case
study, we ported Zaho et al’s Pigasus IDS [38] to Rosebud. Pigasus

is the first open source FPGA hardware design to achieve 100 Gbps

throughput. We show that we can use the RPU abstraction to scale

up the performance to twice the rate they achieved in their paper.

The main questions we answer in this case study are as follows:

How easily can we port the core Pigasus hardware accelerators—

string and port matching—to Rosebud’s RPUs? Can we use Rosebud

to achieve incremental hardware design where we start with a base

accelerator and incrementally add improvements and observe their

performance gain? Finally, how much the Rosebud framework can

improve Pigasus’s performance?

Case study 2: Building a Blacklisting Firewall. For our second case
study, we evaluate how much easier Rosebud makes developing

a new middlebox from scratch. Namely, we show it is feasible to

implement a simple 200 Gbps firewall based on a single hardware

accelerator that blocks packets that match an IP blacklist.

We were able to develop both of these case studies in less than a

month in total by only one developer. We show Rosebud improved

the line-rate of the Pigasus IDS from 100 Gbps to 200 Gbps for

800 Bytes packets
2
, and achieves 200 Gbps for packets as small as

256 Bytes for the firewall implementation.

7.1 Pigasus IDS/IPS
7.1.1 Why is an IDS Hard to Develop in an FPGA?. IDSes identify
suspicious behavior by monitoring network traffic and comparing

it to a set of known fingerprints, stored in a constantly evolving

ruleset. Many operators run all incoming traffic through an IDS,

however they often have to divide traffic across clusters of servers

to handle the computationally-intensive pattern matching for line-

rate traffic [12]. This computationally expensive operation is easy to

parallelize; therefore, FPGAs are often considered for accelerating

IDSes [5, 18, 31]. The Pigasus team built the first open-sourced

FPGA-first IDS accelerator to provide 100 Gbps acceleration for the

Snort IDS running on a single server [38].

However, FPGA developers such as the Pigasus team had to build

from scratch a significant fraction of their IDS hardware design

to hit line-rate on an FPGA. The developers had to build their

own packet processing pipeline from scratch, including building

2
The average packet size for internet traces is over 800 Bytes [38].

Table 3: Average resource utilization for RPUs with Pigasus,
and the accompanying Hash-based LB

Component LUTs Registers BRAM URAM DSP

RISCV core 2048 (3.2%) 1051 (0.8%) 0 0 0

Mem. subsystem 3503 (5.5%) 906 (0.7%) 16 (14.0%) 32 (50.0%) 0

Accel. manager 803 (1.2%) 2717 (2.1%) 0 0 0

Pigasus 36012 (56.1%) 49364 (38.3%) 56 (49.1%) 22 (34.4%) 80 (20.8%)

Total 42364 (66.0%) 54037 (41.9%) 72 (63.2%) 54 (84.4%) 80 (20.8%)

RPU 64161 128880 114 64 384

LB 10467 (0.9%) 24872 (1.0%) 26 (1.2%) 0 0

Remaining 103549 (8.8%) 205528 (8.7%) 154 (7.1%) 96(10.0%) 648 (9.5%)

hardware accelerators for parts of the processing that could be done

in software, such as packet parsing.

7.1.2 Porting Challenges and New Features. The details of the steps
required to port Pigasus to Rosebud are provided in Appendix A.

Unfortunately, in the first pass of building Pigasus with Rosebud,

the scaled-up 200 Gbps design did not fit in our FPGA. After reach-

ing out to the Pigasus team, they mentioned that lack of memory

resources in the FPGA was a bottleneck for going to 200 Gbps, even

when they used a large Intel Stratix 10 MX FPGA. However, upon

a close look at our resource requirement report, we noticed that

no large URAMs were used for the large lookup tables in string

or port matcher accelerators. This is because URAMs cannot be

initialized when an FPGA bitstream is loaded, as they are targeted

for FIFOs. One method would be to initialize them during runtime,

but before Rosebud that would have required more development

effort to enable initialization from the server hosting the FPGA.

Using the RPU memory subsystem in Rosebud, we were able to

fill these tables at runtime. We simply added a write port to the four

large lookup memories in the accelerators. Still full Pigasus string

matching engine did not fit in a single RPU, as they previously used

the full FPGA for it. Fortunately, the number of string matching

engines was parameterized, and by just changing it to 16 from 32, in

addition to benefiting from the footprint reduction using URAMs,

it fit within an RPU. The next highest utilization resource was the

DSP blocks used for computing the hash for addressing the table,

but it was still within the available capacity. We used the layout

with 8 RPUs, as it provides more resources per RPU. A layout with

4 RPUs would have more resources per RPU, but the overhead of

software running on RISC-V cores would become a bottleneck.

Rosebud also enabled overcoming a key limitation of the original

Pigasus design: there is no way to reconfigure the pattern matcher’s

ruleset during runtime. The only method to update the ruleset is

to reload a new FPGA image. Not only we can benefit from the

PR support in RPU, but also we can use the packet distribution

subsystem to modify the large lookup tables during runtime.

To further demonstrate the benefits of the bridging between

software and hardware that Rosebud provides, we also implemented

the Pigasus’s TCP flow reordering in software on the RISC-V core,

instead of porting their hardware accelerator. We built a hash-

bashed LB for Rosebud to always send packets of the same flow

to the same RPU. The LB also pads the 4-byte hash result to the

beginning of each packet, so that the software can reuse the flow

hash without recomputation, and also know the exact hash that the

LB has used. In each RPU, we used the scratch pad memory to keep

0.5 MB of flow state: storing the time and sequence number of the

last seen packet from each flow, the flow hash, and the last 7 bytes
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Figure 8: IPS performance in terms of (a) bandwidth and (b)
packet rate, using Pigasus in Rosebud, comparedwith Snort.

of the packet required to be checked for the next packet. We can fit

32K entries of 16 Bytes within the 0.5 MB RPU memory, covering

15 bits of the hash as the index to this table. Since the LB has split

the flows based on 3 bits of the same hash, in total we have covered

18 bits of the hash (out of 32 bits). Furthermore, older flows quickly

time out in our software implementation, making a hash collision

very unlikely. If we encounter reordering, we use up to half of our

packet slots (e.g., 16) to buffer the out-of-order packets until the

re-ordered packets arrive. In the rare case of collision, or running

out of reordering buffers, we forward the corresponding packets

to the host. Table 3 shows the average resource utilization break

down inside each Pigasus RPU unit, as well as the hash-based LB

used for this mechanism.

The software reordering will be less efficient than the hardware-

based solution proposed in Pigasus, but utilizing software next to

hardware can be used for prototyping or testing new ideas. To

better understand the overhead of software reordering, we evaluate

Rosebud assuming such hardware reordering accelerator exists

within our round robin LB, similar to the inline hash computation

accelerator within our hash-based LB. This is reasonable as their

reassembler accelerator keeps the state per flow, and attaches the

required state to each packet, so no state needs to be kept within

RPUs and any RPU can process any packet. Since the addition of

this accelerator would not impact the performance of software

within RPUs, porting it was not necessary. However, compared

to the numbers reported in the Pigasus paper, plenty of available

resources still remain in our round robin LB (as shown in Table 2),

should someone choose to add the reorder accelerator in the future.

7.1.3 Performance Evaluation. To evaluate the performance of Pi-

gasus on Rosebud, we first made a packet trace based on the ruleset

used for the generation of the Pigasus accelerator. Then, we used

tcpreplay to transmit packets at low rate to verify that the ex-

pected number of packets are selected by the IPS accelerator and

sent to the host. Next, using tcpreplay we played back the attack

pattern, and used another FPGA to fill the rest of the pipe with

background traffic to hit 200 Gbps. For this case study we ran the

attack as 1% of the traffic (2 Gbps) with 0.3% reordering among the

TCP flows in both the attack and safe traffic. This attack rate is

considered a medium to high rate, and the reordering rate is the

typical reordering happening for middlebox traffic [38].

By using this traffic generation setup, we compared performance

of three systems: (1) Pigasus with hardware accelerated reorder

engine, (2) Pigasus with software reorder engine running on RISC-V

cores, and (3) Snort running on a machine with Intel Xeon 6130

with 32 physical cores—or 64 hyper-threaded cores. For the Snort

performance measurements, we setup the rules so Snort is per-

forming only the exact same fast-pattern matching performed by

the Pigasus accelerators. Also we enabled Snort’s Hyperscan [30]

to improve fast pattern matching speed by benefiting from Intel’s

AVX-512 vector instructions within Intel CPU, as well as the Linux

Kernel’s AFPACKET
3
to minimize the overhead for moving packets

from the kernel to userspace. Enabling both of these resulting in

more than 2 times improvement in performance.

Figure 8a shows the results of this experiment. Rosebudwith both

hardware acceleration for both reordering and pattern matching

achieves the highest performance: almost 200 Gbps for packet sizes

larger than 800 Bytes. The use of software running on the slow

RISC-V cores to do reordering does indeed lower performance, but

it still can achieve almost 100 Gbps at 800 Bytes, and 166 Gbps for

2048 Byte packets. The non-perfect load balancing among the RPUs,

due to non-uniformity of the flow hash results, also plays a smaller

part in the performance degradation. Snort performs worse than

both Rosebud implementations.

We also evaluate the performance differences from the perspec-

tive of packet rate (Figure 8b). The packet rate is limited by the

software running on RISC-V cores in Rosebud to 60 and 138 MPPS

for the HW-based and SW-based reodering, respectively. That is the

limiting factor until 512 Byte packets for the HW-based reordering,

and 1024 Bytes packets for the SW-based. After this thresholds,

another limitation is added which is the maximum packet rate for

a specific packet size at 200 Gbps, which is depicted by the dotted

lines. For the HW-based reordering, from 800 Bytes packets the

max packet rate is the dominant limiting factor and sets the perfor-

mance, while for the SW-based results the software overhead still

plays a part, even for 2048 Bytes packets.

For the Snort performance on a multi-core CPU, we see that for

different packet sizes, the packet rate is limited between 4.7 and 5.6

MPPS. Although Snort is running on Xeon cores which have an or-

der of magnitude higher clock rates than the FPGA, and Hyperscan

hardware acceleration does speed up pattern matching on the mul-

ticore CPU, the achieved packet rate is much lower than Rosebud

on an FPGA. This may be because Hyperscan’s acceleration is done

in a sequential manner, even the AVX-512 instructions are not as

fully pipelined, compared to the pattern matching in the Pigasus

FPGA implementation. To make sure the Linux network stack is not

3
https://doc.dpdk.org/guides/nics/af_packet.html
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Figure 9: Average cycles spent per packet

introducing a bottleneck for Snort, we did an additional experiment

where we ran Snort on only safe traffic with 2048 Bytes packets read

directly from the RAM (Using ramdisk). The performance increased

from 60 Gbps to only 70 Gbps, proving that AFPACKET moving

packets between the interface and Snort is not the primary bottle-

neck for Snort’s performance. These results also clearly motivate

why Pigasus can achieve >100 Gbps on a single host: the FPGA

filters non-attack traffic coming in at line-rate, and the CPU only

deals with attack traffic at a fraction of the line-rate.

7.1.4 Performance Analysis of Pigasus on Rosebud. Rosebud achieved
twice as the performance of original Pigasus due to increased

amount of parallelization. We used 16 string matching engines

inside each RPU, as opposed to 32 in the original Pigasus’s design.

But we have 8 RPUs within our FPGA, that makes our system

4 times more parallel. Table 3 shows the resource utilization for

this integration. As a point of comparison and benefits from using

URAM memories, These 8 RPUs are placed within 2/3rd of our

FPGA which in total has a similar capacity to their FPGA.

Considering that there were 8 RPUs and within each RPU the

accelerators could potentially process 16 Bytes per cycle, the maxi-

mum rate for this computation at clock frequency of 250MHzwould

be 256 Gbps. This is more than the target 200 Gbps performance,

and hence not a bottleneck. However, as observed in Figure 8a the

200 Gbps is not achievable in many packet sizes. This results are

also lower than the throughput of the packet distribution system,

as shown in Section 6, indicating that packet distribution is not the

bottleneck either. Indeed the software running on the slow RISC-V

cores is setting the limit for small packet sizes.

Based on the measured packet rate, we can compute the number

of cycles spent per packet, depicted in Figure 9. When no reordering

is performed in the software (HW reorder line), the cycles spent

per packet is 60.2 for the small packets. When we checked the

simulation results for the same packet size and the same C-code,

we observed that it takes 61 cycles for safe TCP packets, 59 cycles

for safe UDP packets, and 82 cycles for attack traffic (the full code

can be found in Appendix B). Therefore, on average, for 1% attack

rate and a small portion of total packets being UDP, the measured

results matches our simulation.

For hardware reordering, the software only runs the parsing and

accelerator management, which could be fully parallelized with

the Pigasus accelerator, therefore even for packet size 1024 Bytes

which requires 61 cycles for Pigasus to process the payload, the

simulation results were still 61 cycles, and only at 2048 Bytes did

the Pigasus runtime become the bottleneck. That being said, for

packet sizes 800 and above the maximum packet rate at 200 Gbps

is bottleneck, not the software on RISC-V core.

For software reordering, the software needs to also handle the

flow state table, resulting in more cycles spent per packet. The

average cycles per packet starts from 138.4 cycles at 64 Bytes, and

slightly rises until 1500 Bytes, where the line rate becomes the

bottleneck and measurements do not reflect the software overhead

anymore. This increase is due to less overlapping opportunity for

the management software and the hardware accelerator, as starting

off the Pigasus accelerator is dependent on the flow state table read

results in software. For the software reordering case, the simulation

results were not as consistent as before, but they were around the

measured average value. To get a proper value it required potentially

simulation of thousands of packets, which is not practical.

Additionally, during these experiments we learnt that careful

software design and compiler efficiency plays a critical role to

achieve high performance in Rosebud. For instance, for the imple-

mentation with hardware reordering, we obtained a 30% improve-

ment in packet rate by adjusting the order of members in a struct,

and also applying a bug fix from the latest RISC-V GCC which was

not available on the Arch Linux repository version at the time.

7.2 Firewall
We next investigated how much developer effort is required to

build a simple firewall middlebox from scratch using Rosebud. A

firewall checks every single packet, and drops the packets whose

IP matches a blacklist, otherwise they are forwarded to the other

Ethernet interface.

To implement a firewall, we built a simple IP prefix lookup hard-

ware accelerator from the list of 1050 blacklist IPs in the “emerging

threats
4
” firewall rules. We wrote a basic python script to parse the

rules and generate a Verilog code for the accelerator. This acceler-

ator first checks for the first 9 bits of the IP prefix, if they match,

then it checks for the remaining 15 bits in the next cycle, and if

there was a match it raises a flag in a register. This lookup can be

performed in only two clock cycles.

Then we assigned a register address that the RISC-V core could

use to load the IP into the accelerator using MMIO, and another

register to read the flag. Listing 1 shows a small code snippet

from the RISC-V code to show how this works (the full code can

be found in the Appendix C). We load the IP address from the

Ethernet packet using the DMA descriptor pointer given by the

RPU interconnect. Then we load the address into the IP matching

accelerator (ACC_SRC_IP) and check the flag to see the results

(ACC_FW_MATCH). In case of a match, we drop the packet by

setting the descriptor length to 0; otherwise, we forward it by swap-

ping the port value between 0 and 1; asking the packet distribution

subsystem to send the packet to the other 100 Gbps port.

1 uns igned i n t s r c _ i p =

2 ∗ ( ( uns igned i n t ∗ ) ( desc −>da t a + 14 + 1 2 ) ) ;

3 ACC_SRC_IP = s r c _ i p ;

4 i f (ACC_FW_MATCH) desc −> l en = 0 ;

5 e l s e desc −>po r t ^= 1 ;

6 pkt_send ( de sc ) ;

Listing 1: RISC-V code snippet for the firewall case study

4https://rules.emergingthreats.net/fwrules/emerging-PF-DROP.rules
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Table 4: Average resource utilization for RPUs with firewall
Component LUTs Registers BRAM URAM DSP

RISCV core 1976 (7.1%) 1050 (1.9%) 0 0 0

Mem. subsystem 2166 (7.8%) 862 (1.5%) 16 (44.4%) 32 (100%) 0

Accel. manager 518 (1.9%) 1944 (3.5%) 0 0 0

Firewall IP checker 835 (3.0%) 197 (0.4%) 0 0 0

Total 5493 (19.7%) 4053 (7.3%) 16 (44.4%) 32 (100%) 0

RPU 27839 55920 36 32 168

We were able to hit 200 Gbps for packets 256 Bytes and above,

while injecting attack traffic within the background traffic. Table 4

shows the average resource utilization breakdown inside each fire-

wall RPU unit. The resource consumption per firewall engine is

small and for more number of rules, several such engines can be

used in parallel and coordinated by the software.

8 RELATEDWORK
There has been a significant amount of prior work in developing

FPGA-based NIC and also System-on-Chip (SoC) NIC development

frameworks that are flexible and debuggable. However, no prior

framework has addressed the issues for FPGA middleboxes, while

providing a software like development and debugging, and the

ability to change hardware acceleration—even during runtime.

8.1 FPGA Frameworks for NICs and Switches
This work builds on a large body of prior work on improving the

software and hardware development process for FPGA-based NICs.

However, they were not targeted at the specific developer needs

of FPGA middleboxes. The HxDP [4] framework, demonstrated a

significant number of the development features could be provided

by one framework. However, HxDP focuses on software-based com-

pilation development environment for FPGAs and does not provide

an interface to add new hardware accelerators to their framework;

therefore it also does not provide a solution to parallelize custom

accelerators. The PANIC [17] NIC framework has a similar packet

distribution system to Rosebud; however, it does not provide soft-

ware control over hardware accelerators, nor the software-like

debugging. Also it is mainly targeted for ASIC implementations.

Other frameworks provide a well-defined shell on an FPGA to

add custom accelerators [8, 10, 11, 14, 16, 24, 39]. However, none of

these provided a software-based development process. There are

also FPGA frameworks that are tailored for applications written in

the P4 language [23, 25, 29], but they are targeted for only switching

applications rather than middleboxes, and do not provide software-

oriented debugging capabilities like Rosebud. None of these prior

frameworks demonstrated it was feasible to build a generic middle-

box FPGA abstraction, like Rosebud, that can provide these features

simultaneously and also achieve line-rate performance.

8.2 HW-Accelerated Network Applications
There are numerous projects that implemented hardware acceler-

ated network middleboxes with their own custom FPGA hardware

pipeline, including an ML platform [22], a key value store [15],

packet filtering [27], and several Intrusion Detection Systems [2,

5, 18, 28, 31]. We believe that future efforts such as these may be

bolstered by this platform. With Rosebud, developers will be able

to focus on building their application-specific accelerators, and

not have to manually tune a pipeline to get high-performance or

manually build debugging hardware.

9 CONCLUSION AND DISCUSSION
Rosebud is a flexible and debuggable FPGA middlebox development

framework. It provides a packet-processing abstraction consisting

of a RISC-V core augmented with hardware accelerators, unified

by custom tailored shared memory and packet distribution sub-

systems. We demonstrate that Rosebud can achieve 200 Gbps. We

also demonstrate that Rosebud has a marginal effect on latency

(especially when compared with PCIe and OS latencies). We plan to

port Rosebud to several FPGA boards, from both Xilinx and Intel,

to make it possible to use the same RPU abstraction among them.

Rosebud can also be used for sharing FPGAs in the cloud services,

such as Amazon AWS-F1 [1], where the cloud provider controls the

LB and users can load their logic into the RPUs. Finally, although

FPGA-based middleboxes benefit most from the flexibility offered

by Rosebud, we believe scope of Rosebud can be potentially wider.

SoC-based SmartNIC designs can benefit from the memory and

messaging subsystems to scale to higher link speeds. Fully custom

ASIC designs can use Rosebud for their incremental builds where

only the accelerators are updated between revisions.

Discussion: Rosebud on Hybrid FPGA platforms. A potential plat-

form for Rosebud is SoC-like FPGAs with hardened CPUs, such as

Xilinx Zynq UltraScale+ MPSoC [33]. However, they have limited

parallelism with a limited number of cores, small memory per core,

and low incoming bandwidth (< 20 Gbps per core). Most impor-

tantly though, they have high communication latency to the logic

fabric (> 100 ns [36, 37]) in the FPGA and use a generic shared

bus that introduces contention, both of which critically limit their

ability to orchestrate parallel processing in the accelerators. The

RPU-based framework can be “hardened” in an SoC architecture in

future FPGAs. Xilinx already has Network-on-Chip IP in their Ver-

sal family of FPGAs [34] that can save the resources used for packet

distribution. AI cores available in this family are also similar to a

software based processor, but they are not a full C-based core and

also they are not spread across the programmable logic. Hardening

the RISC-V cores will result in significantly faster packet processing

performance, compared to the ones made on top of programmable

logic. Rosebud already fully supports clock crossing between the

core and accelerators domains. Furthermore, for applications that

require large memories, the Versal family also includes FPGAs with

integrated High Bandwidth Memory (HBM) up to 32 GB. If even

larger memories are required, Rosebud can be mapped to Intel

Xeon-FPGA hybrid chips [7] to have faster access to host memory.
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A STEPS TO PORT PIGASUS ACCELERATOR
In this appendix, we describe the steps to port a design to Rosebud,

following our process for the Pigasus case study. We chose to port

two of the main hardware accelerators from Pigasus: the pattern

matcher, and the port matcher. As discussed in Section 7.1.2, we

skipped porting their reassembly engine and modeled it by our

round robin LB itself, while we replicated the functionality with a

hash-based LB and use of software running on the RISC-V.

A.1 Developing the Accelerator
First, we simply copied the files in the string pattern matcher and

port matcher directories from the Pigasus code base. We only had

to swap a few IP modules—such as FIFOs—which were generated

with Intel Quartus and were not compatible with Xilinx Vivado.

We used our own libraries written in Verilog instead. Then we set

the parameter for their rule packer module to output in chunks of

32 bits (rather than 128 bits) to match our RISC-V word size.

A.2 Connecting the Accelerator to RPU
Next, we had to write a basic wrapper to connect the Pigasus ac-

celerators to the system within an RPU. The role of this wrapper

is mainly to connect the wires and set the desired addressing for

configuration registers. Their accelerators use a streaming input

and could be connected directly within an RPU, as we support both

the streaming data and random access memory—also known as

native memory—interfaces. For the address assignment logic, it

is a basic case statement in Verilog, and we provide examples for

both blocking or non-blocking read and writes from the software

running on RISC-V to the registers. Furthermore, to reduce the over-

head of software control, we add basic hardware queues (FIFOs) per

accelerator in this wrapper. Such queues make the orchestration of

accelerators similar to an asynchronous scheduling software that

manages local resources, where the software feeds and checks the

accelerator resources.

A.3 Writing the Accompanying C Code
To have a complete RPU, we also need the software for the RISC-V

processors to support the accelerators similar to a firmware. We

use GNU RISC-V GCC to compile the code alongside the provided

libraries to receive and send packets, and communicate with dif-

ferent components of Rosebud and the host. This code parses the

packet headers, manages the Pigasus accelerator by feeding the

start pointer and length of the payload, and finally appends the

matched rule IDs to the matched packets before sending them to

the host, or sends the safe traffic out on a physical port.

A.4 Simulating the C Code with Accelerators
At this stage, we can proceed to simulation to verify the interaction

between the C code and the accelerators. We provide a Python-

based simulation framework, using CocoTB [6] simulator to connect

Python to an RTL simulator for the Verilog code, Use of Python

considerably simplifies writing test benches. For example, we could

easily use Python libraries such as Scapy [3] to craft packets for

testing, and also use idstools [13] to parse the rules and make

the attack packets accordingly. To run the simulation, we provide

Python functions to load thememories of the RPUs from the outputs

generated by the GCC, as well as accompanying function to send

and receive packets to the rest of the system. We provide both

options of single RPU or full Rosebud simulation, the latter being

more complete but also more time-consuming. At this stage, single

RPU simulation proved to be more useful, as we were elaborating

the interaction within an RPU, and also the packet distribution

framework practically isolates the functionality of each RPU. The

full Rosebud simulation can become handy to elaborate the design

of a new LB, or communication between the RPUs if necessary.

A.5 Generating the Bitstream for FPGA
After verifying the functionality of the Pigasus accelerator within

Rosebud, we proceeded to implementation with the FPGA develop-

ment toolchain. We only needed to add the Verilog file names of the

Pigasus accelerators, and the corresponding accelerator wrapper

we developed, to our script and let the tool chain output the bit

file for the target FPGA. Regions for RPUs are already laid out,

and the rest of the logic is already placed and routed, so we only

have to build the bitstreams for the partially reconfigurable regions

of each RPU. After the first implementation run, we ran into the

problem of insufficient resources per RPU. This issue was addressed

through the additional capabilities provided in Rosebud framework,

discussed in Section 7.1.2.

A.6 Load the FPGA and RPU Memories
Next, we loaded the bitstreams on the target FPGA, using our

Bash scripts. We developed a host-side C library to communicate

with the FPGA. This library integrates the Xilinx’s PR-loading tool,

MCAP_tool, and the Corundum 100 Gbps FPGA-to-host NIC dri-

ver [9]. Therefore, we update an RPU using the PR-loading, and

initialize the RPUs memories and LB configurations through C code

running on the host. We used this library to load the instruction,

data and accelerator memories of the RPU, directly from the ELF

output file of GCC.

A.7 Runtime Debugging
For debugging, we use the host-side libraries where we have read

and write access to the memories within an RPU, and we can send

interrupts or read status bits from each RPU. We also developed a

separate 64-bit debug channel between the host and each RPU. In a

deadlock scenario, host can send a poke interrupt and communicate

via an RPU in both directions using this channel at a lower rate.

A.8 Runtime Reconfiguration
To do reconfiguration of an RPU at runtime, we send a signal from

the host to the LB to stop sending packets to that specific RPU, and

then send an eviction interrupt to the RISC-V core to instruct it to

finish processing the current packets and save the desired state to

the host. Next we use the host-side libraries to write the new bit

file to the PR block corresponding to the target RPU, followed by

loading the RPU’s instruction and data memories. Now we reset

the core and let it boot up, and restore its state by reading from the

host memory if necessary. When the core is ready, we signal the

LB through the host to resume sending packets to that RPU again.
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B CODE FOR PIGASUS CASE STUDY
The following code shows the C code running on the RISC-V cores

for the Pigasus case study. This code is for the hardware reorder

test and does not keep the flow state. The full code for the software

reorder implementation can be found in the repository.

1 # i n c l u d e " co r e . h "

2 # i n c l u d e " p a cke t _he ade r s . h "

3

4 # d e f i n e bswap_16 ( x ) ( ( ( x & 0 x f f 0 0 ) >> 8 ) | ( ( x & 0 x 0 0 f f ) << 8 ) )

5 # d e f i n e bswap_32 ( x ) ( ( ( x & 0 x f f 0 0 0 0 0 0 ) >> 2 4 ) | ( ( x & 0 x 0 0 f f 0 0 0 0 ) >> 8 ) \

6 | ( ( x & 0 x 0 0 0 0 f f 0 0 ) << 8 ) | ( ( x & 0 x 0 0 0 0 0 0 f f ) << 2 4 ) )

7

8 # d e f i n e mem_align ( x ) ( ( ( uns igned i n t ) x +3 ) & 0 xFFFFFFFC )

9

10 / / maximum number o f s l o t s ( number o f c on t e x t o b j e c t s )

11 # d e f i n e MAX_CTX_COUNT 32

12 # d e f i n e REORDER_LIMIT 8

13

14 / / Packe t s t a r t o f f s e t t o DWORD a l i g n E th e rn e t pay load and p rov i d e space f o r header mo d i f i c a t i o n s

15 # d e f i n e PKT_OFFSET 10

16

17 / / PMEM in 8 b l o c k s o f 128 KB A c c e l e r a t o r s a r e only connec ted to upper 2 b l o c k s

18 # d e f i n e PKTS_START ( ( 8 − (MAX_CTX_COUNT/ 8 ) ) ∗ 1 2 8 ∗ 1 0 2 4 )

19

20 / / Acce l wrapper r e g i s t e r s mapping

21 # d e f i n e ACC_PIG_CTRL ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x00 ) ) )

22 # d e f i n e ACC_PIG_MATCH ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x00 ) ) )

23 # d e f i n e ACC_PIG_STATE ( ∗ ( ( v o l a t i l e uns igned long long ∗ ) ( IO_EXT_BASE + 0 x10 ) ) )

24 # d e f i n e ACC_PIG_STATE_L ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x10 ) ) )

25 # d e f i n e ACC_PIG_STATE_H ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x14 ) ) )

26 # d e f i n e ACC_PIG_PORTS ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x0c ) ) )

27 # d e f i n e ACC_PIG_SRC_PORT ( ∗ ( ( v o l a t i l e uns igned s ho r t ∗ ) ( IO_EXT_BASE + 0 x0c ) ) )

28 # d e f i n e ACC_PIG_DST_PORT ( ∗ ( ( v o l a t i l e uns igned s ho r t ∗ ) ( IO_EXT_BASE + 0 x0e ) ) )

29 # d e f i n e ACC_PIG_SLOT ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x18 ) ) )

30 # d e f i n e ACC_PIG_RULE_ID ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x1c ) ) )

31

32 # d e f i n e HASH_LOOKUP ( ∗ ( ( v o l a t i l e uns igned s ho r t ∗ ) ( IO_EXT_BASE + 0 x60 ) ) )

33 # d e f i n e HASH_BLOCK_32B ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x64 ) ) )

34

35 # d e f i n e ACC_DMA_LEN ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x04 ) ) )

36 # d e f i n e ACC_DMA_ADDR ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x08 ) ) )

37 # d e f i n e ACC_DMA_STAT ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x78 ) ) )

38 # d e f i n e ACC_DMA_BUSY ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x78 ) ) )

39 # d e f i n e ACC_DMA_DONE ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x79 ) ) )

40 # d e f i n e ACC_DMA_DONE_ERR ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x7a ) ) )

41

42 / / S l o t c o n t e x t s

43 s t r u c t s l o t _ c o n t e x t {

44 s t r u c t Desc desc ;

45 i n t index ;

46

47 / / P o i n t e r s

48 uns igned char ∗ eop ;

49 uns igned char ∗ header ;

50

51 s t r u c t e th_heade r ∗ e th_hdr ;

52 union {

53 s t r u c t i pv4_heade r ∗ i pv4_hdr ;

54 } l 3 _h e ad e r ;

55 union {

56 s t r u c t t cp_heade r ∗ t cp_hdr ;

57 s t r u c t udp_header ∗ udp_hdr ;

58 } l 4 _h e ad e r ;

59 } ;

60

61 s t r u c t s l o t _ c o n t e x t c on t e x t [MAX_CTX_COUNT+1 ] ;

62 uns igned i n t pkt_num , s l o t _ c oun t , h e a d e r _ s l o t _ b a s e ;

63

64 con s t uns igned i n t s l o t _ s i z e = 1 6 ∗ 1 0 2 4 ;

65 con s t uns igned i n t h e a d e r _ s l o t _ s i z e = 1 2 8 ;
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66

67 s t a t i c i n l i n e vo id s l o t _ r x _ p a c k e t ( s t r u c t s l o t _ c o n t e x t ∗ s l o t )

68 {

69 uns igned i n t p a y l o a d _ o f f s e t ;

70 uns igned i n t p a c k e t _ l e ng t h = s l o t −>desc . l e n ;

71

72 / / check e th type

73 i f ( s l o t −>eth_hdr −>type == bswap_16 ( 0 x0800 ) )

74 {

75 / / IPv4 packet , check p r o t o c o l

76 i f ( s l o t −> l 3 _h e ad e r . ipv4_hdr −>p r o t o c o l == 0 x06 ) / / TCP

77 {

78 p a y l o a d _ o f f s e t = ETH_HEADER_SIZE + IPV4_HEADER_SIZE + TCP_HEADER_SIZE ;

79

80 ACC_DMA_ADDR = ( uns igned i n t ) ( s l o t −>desc . d a t a ) + p a y l o a d _ o f f s e t ;

81 ACC_DMA_LEN = pa ck e t _ l e ng t h − p a y l o a d _ o f f s e t ;

82 ACC_PIG_PORTS = ∗ ( uns igned i n t ∗ ) s l o t −> l 4 _h e ad e r . t cp_hdr ; / / both p o r t s

83 ACC_PIG_STATE_H = 0 x01FFFFFF ;

84 / / ACC_PIG_STATE_L = 0 xFFFFFFFF ; / / Redundant

85 ACC_PIG_SLOT = s l o t −>index ;

86 ACC_PIG_CTRL = 1 ;

87 r e t u r n ;

88 }

89 e l s e / / UDP

90 {

91 p a y l o a d _ o f f s e t = ETH_HEADER_SIZE + IPV4_HEADER_SIZE + UDP_HEADER_SIZE ;

92

93 ACC_DMA_ADDR = ( uns igned i n t ) ( s l o t −>desc . d a t a ) + p a y l o a d _ o f f s e t ;

94 ACC_DMA_LEN = pa ck e t _ l e ng t h − p a y l o a d _ o f f s e t ;

95 ACC_PIG_PORTS = ∗ ( uns igned i n t ∗ ) s l o t −> l 4 _h e ad e r . udp_hdr ; / / both p o r t s

96 ACC_PIG_STATE_H = 0 ;

97 ACC_PIG_SLOT = s l o t −>index ;

98 ACC_PIG_CTRL = 1 ;

99 r e t u r n ;

100 }

101 }

102 s l o t −>desc . l e n = 0 ;

103 pkt_send (& s l o t −>desc ) ;

104 }

105

106 s t a t i c i n l i n e vo id s l o t _ma t ch ( s t r u c t s l o t _ c o n t e x t ∗ s l o t ) {

107 uns igned i n t r u l e _ i d ;

108

109 whi l e ( 1 ) {

110 r u l e _ i d = ACC_PIG_RULE_ID ;

111 asm v o l a t i l e ( " " : : : "memory " ) ;

112

113 i f ( r u l e _ i d ! = 0 ) {

114 ACC_PIG_CTRL = 2 ; / / r e l e a s e the match

115 asm v o l a t i l e ( " " : : : "memory " ) ;

116 / / Add r u l e IDs to the end o f the packe t

117 s l o t −>eop = ( uns igned char ∗ ) mem_align ( s l o t −>desc . d a t a + s l o t −>desc . l e n ) ;

118 ∗ ( uns igned i n t ∗ ) s l o t −>eop = r u l e _ i d ;

119 s l o t −>desc . l e n = ( uns igned i n t ) s l o t −>eop − ( uns igned i n t ) s l o t −>desc . d a t a + 4 ;

120 s l o t −>desc . po r t = 2 ;

121 } e l s e { / / EoP

122

123 ACC_PIG_CTRL = 2 ; / / r e l e a s e the EoP

124 asm v o l a t i l e ( " " : : : "memory " ) ;

125 pkt_send (& s l o t −>desc ) ;

126 r e t u r n ; / / Go back to main loop when done with a packe t

127 }

128

129 i f (ACC_PIG_MATCH) / / c on t i nue d r a i n i n g FIFO

130 s l o t = &con t e x t [ACC_PIG_SLOT ] ;

131 e l s e

132 break ;

133 }

134 }
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135

136 i n t main ( vo id )

137 {

138 s t r u c t s l o t _ c o n t e x t ∗ s l o t ;

139 uns igned i n t reorder_mask , r e o r d e r _ l e f t _ma sk , i n i t _ l e f t _m a s k ;

140

141 DEBUG_OUT_L = 0 ;

142 DEBUG_OUT_H = 0 ;

143

144 / / s e t s l o t c o n f i g u r a t i o n pa rame te r s

145 s l o t _ c o un t = 3 2 ;

146 h e a d e r _ s l o t _ b a s e = DMEM_BASE + (DMEM_SIZE >> 1 ) ;

147

148 i f ( s l o t _ c o u n t > MAX_SLOT_COUNT)

149 s l o t _ c o un t = MAX_SLOT_COUNT ;

150

151 i f ( s l o t _ c o u n t > MAX_CTX_COUNT)

152 s l o t _ c o un t = MAX_CTX_COUNT ;

153

154 / / I n i t i a l i z i n g LB and RPU i n t e r c o nn e t

155 i n i t _ h d r _ s l o t s ( s l o t _ c oun t , h e a d e r _ s l o t _ b a s e , h e a d e r _ s l o t _ s i z e ) ;

156 i n i t _ s l o t s ( s l o t _ c oun t , PKTS_START+PKT_OFFSET , s l o t _ s i z e ) ;

157 se t_masks ( 0 x30 ) ; / / Enab le on ly E v i c t + Poke

158

159 / / i n i t s l o t c on t e x t s t r u c t u r e s

160 f o r ( i n t i = 1 ; i <= s l o t _ c o un t ; i ++)

161 {

162 c on t e x t [ i ] . i ndex = i ;

163 c on t e x t [ i ] . d e s c . t ag = i ;

164 c on t e x t [ i ] . d e s c . d a t a = ( uns igned char ∗ ) ( PMEM_BASE + PKTS_START + PKT_OFFSET + ( i −1) ∗ s l o t _ s i z e ) ;

165 c on t e x t [ i ] . header = ( uns igned char ∗ ) ( h e a d e r _ s l o t _ b a s e + PKT_OFFSET + ( i −1) ∗ h e a d e r _ s l o t _ s i z e ) ;

166 c on t e x t [ i ] . e th_hdr = ( s t r u c t e th_heade r ∗ ) ( c on t e x t [ i ] . header ) ;

167

168 c on t e x t [ i ] . l 3 _h e ad e r . i pv4_hdr = ( s t r u c t i pv4_heade r ∗ ) ( c on t e x t [ i ] . header + ETH_HEADER_SIZE ) ;

169 c on t e x t [ i ] . l 4 _h e ad e r . t cp_hdr = ( s t r u c t t cp_heade r ∗ ) ( c on t e x t [ i ] . header + ETH_HEADER_SIZE + IPV4_HEADER_SIZE ) ;

170 }

171

172 ACC_PIG_STATE_L = 0 xFFFFFFFF ;

173 / / pkt_num = 0 ;

174

175 whi l e ( 1 )

176 {

177 / / check f o r new pa ck e t s

178 i f ( i n _pk t _ r e ady ( ) )

179 {

180 / / compute index

181 s l o t = &con t e x t [RECV_DESC . t ag ] ;

182

183 / / copy d e s c r i p t o r i n t o con tex t , we a l r e a d y know the da t a p o i n t e r

184 s l o t −>desc . desc_ low = RECV_DESC . desc_ low ;

185 asm v o l a t i l e ( " " : : : "memory " ) ;

186 RECV_DESC_RELEASE = 1 ;

187

188 / / hand le packe t

189 s l o t _ r x _ p a c k e t ( s l o t ) ;

190 }

191

192 i f (ACC_PIG_MATCH) {

193 s l o t _ma t ch (& con t e x t [ACC_PIG_SLOT ] ) ;

194 }

195 }

196

197 r e t u r n 1 ;

198 }
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C CODE FOR FIREWALL CASE STUDY
The following code shows the C code running on the RISC-V cores

for the firewall case study.

1 # i n c l u d e " co r e . h "

2

3 # d e f i n e bswap_16 ( x ) ( ( ( x & 0 x f f 0 0 ) >> 8 ) | ( ( x & 0 x 0 0 f f ) << 8 ) )

4

5 / / Acce l wrapper r e g i s t e r s mapping

6 # d e f i n e ACC_SRC_IP ( ∗ ( ( v o l a t i l e uns igned i n t ∗ ) ( IO_EXT_BASE + 0 x00 ) ) )

7 # d e f i n e ACC_FW_MATCH ( ∗ ( ( v o l a t i l e uns igned char ∗ ) ( IO_EXT_BASE + 0 x04 ) ) )

8

9 s t a t i c i n l i n e vo id s l o t _ r x _ p a c k e t ( s t r u c t Desc ∗ de sc )

10 {

11 uns igned sho r t e th_ type = ∗ ( ( uns igned s ho r t ∗ ) ( desc −>da t a + 1 2 ) ) ;

12 uns igned i n t s r c _ i p = ∗ ( ( uns igned i n t ∗ ) ( desc −>da t a + 14 + 1 2 ) ) ;

13

14 / / check e th type

15 i f ( e t h_ type == bswap_16 ( 0 x0800 ) )

16 {

17 / / s t a r t F i r ew a l l IP check

18 ACC_SRC_IP = s r c _ i p ;

19 i f (ACC_FW_MATCH)

20 {

21 goto drop ;

22 }

23 e l s e

24 {

25 desc −>po r t ^= 1 ;

26 pkt_send ( de sc ) ;

27 r e t u r n ;

28 }

29 }

30

31 drop : / / Non IPV4 or in f i r e w a l l l i s t

32 desc −> l en = 0 ;

33 pkt_send ( desc ) ;

34 }

35

36 i n t main ( vo id )

37 {

38 / / I n i t i a l i z i n g LB and RPU i n t e r c o nn e t

39 i n i t _ h d r _ s l o t s ( 1 6 , 0 x804000 , 1 2 8 ) ;

40 i n i t _ s l o t s ( 1 6 , 0x0C000A , 1 6 3 8 4 ) ;

41

42 / / Enab le on ly E v i c t and Poke I n t e r r u p t s

43 se t_masks ( 0 x30 ) ;

44

45 whi l e ( 1 )

46 {

47 / / check f o r new pa ck e t s

48 i f ( i n _pk t _ r e ady ( ) )

49 {

50 s t r u c t Desc desc ;

51 / / r ead d e s c r i p t o r

52 r e a d_ i n_pk t (& desc ) ;

53 s l o t _ r x _ p a c k e t (& desc ) ;

54 }

55 }

56

57 r e t u r n 1 ;

58 }
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D ARTIFACT APPENDIX
D.1 Abstract
Rosebud is a framework to simplify development, debugging and

performance tuning for FPGA-accelerated middleboxes. We have

made all of the hardware designs (Verilog) and software (RISC-V

C) open source on GitHub. The RISC-V toolchain and used python

libraries are open-source. Building and programming the FPGA

image requires Xilinx’s Vivado toolchain, however building the

image take a long time and requires licenses from Xilinx, so we

provide the bitstreams we used to run the experiments in the paper

in the GitHub. AMakefile to generate FPGA bitstreams are provided,

and also scripts to generate the host-side and RISC-V binaries.

The primary experiments in this work are evaluating the perfor-

mance of Rosebud. Running these experiments requires running

two Xilinx FPGA cards. The GitHub includes experiment scripts to

evaluate Rosebud’s forwarding throughput and latency for different

packet sizes. It also includes scripts, RISC-V software, and FPGA

images to run the performance tests for the case studies of the

Rosebud framework, including a firewall and an Intrusion Detec-

tion System (IDS). We include scripts to generate the packet traces

for these experiments in GitHub. For each of the experiments we

include a README that describes how to parameterize the Rosebud

runtime environment for each data point in the experiments by

passing parameters to a Makefile. We also include in the GitHub the

software simulation framework that can be used to test the Verilog

and RISC-V C for functional correctness.

D.2 Artifact Checklist (Meta-Information)
• Run-time environment: Linux (tested on Ubuntu and Arch).

• Execution: Load the Xilinx FPGA bitstreams running on two FPGA

cards. Run experiment scripts.

• Metrics: Throughput (i.e., packets per second), latency.

• Output: We output the metrics for both the performance tests of

the framework, as well as the case studies applications.

• Experiments: We have provided scripts for the experiments. We

expect minor variations from the results in the paper.

• Howmuch disk space required (approximately)?: The tests do
not require considerable disk space, and 100 GBs for Vivado.

• Howmuch time is needed to prepare workflow?: An hour for

installing open source tools, and a few for Vivado.

• How much time is needed to complete experiments?: A few

hours.

• Workflow framework used?: We usedMakefiles and bash scripts.

• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.7651655

D.3 Description
D.3.1 How to Access.

• Publicly available: https://github.com/ucsdsysnet/Rosebud
• Code licenses:MIT License

D.3.2 Hardware Dependencies.

• Xilinx Virtex UltraScale+ FPGA VCU1525 (x2)

• One or two machines hosting the FPGAs.

D.3.3 Software Dependencies.

• Xilinx Vivado 2022.2.1 and its drivers

• riscv-gcc
• Python3 alongside scapy, pyelftools, dpkt, idstools

• tcpdump and tcpreplay

D.4 Installation
Steps to install required open-source software and Vivado drivers

are mentioned in the repository.

• Compilation: We have provided Makefiles for building the

host-side binaries, driver, and RISC-V firmware.

• Binary: FPGA images are provided.

D.5 Experiment Workflow
First, the FPGAs need to be programmed with the corresponding

image. One FPGA is the tester FPGA that generates test packets, and

one is the FPGA running benchmarks on the Rosebud framework,

which we call the Design Under Test (DUT) FPGA. The tester FPGA

is programmed with the Rosebud framework with a 16-RPU design

and is mostly used as a high-speed packet generator. The DUT

FPGA is programmed with different configurations of the Rosebud

framework to benchmark it under a variety of test cases.

All of the experiments in this paper follow the same general

procedure. First you will load the images on the FPGAs using a

script we provide or Vivado. For instance, to load the image on

the DUT FPGA that we use for most of the experiments, go to the

directory host_utils/runtime and run:

$ ./loadbit.sh prog ../../bitfiles/VCU1525_16RPU_Firewall.bit

If there are multiple FPGAs on the same machine, you can pass

the JTAG index for the other FPGAs to this script, if this script fails

you can use Vivado as a backup method to load the image.

Next, the Corundum Linux driver needs to be built and loaded.

Go to host_utils/driver/mqnic and do:

$ make; sudo modprobe ptp; sudo insmod mqnic.ko

Then reset the FPGAs after loading the driver, which can be done

by running $ make reset_all from host_utils/runtime. If after

programming, PCIe enumeration fails and host cannot see an FPGA

(missing in output of make reset_all ), a system reboot and then

reload of the Corundum driver is required (no need to reprogram).

To run code on the RISC-V cores on the FPGA, the corresponding

binaries should be generated and loaded to the cores, alongside

configuring the system settings (i.e., receiving RPUs). Finally, the

host side profiling utility is run to measure the throughput of the

system. These steps are scripted, e.g., in the make do command.

All evaluation scripts are located in host_utils/runtime, and trace

generation and injection scripts location are mentioned per each

experiment. If both FPGAs are installed on the same machine, they

can be addressed by their device names, e.g., mqnic0 and mqnic1.

D.6 Evaluation and Expected Results
In this evaluation, we assume both FPGAs are on the same ma-

chine, where the mqnic0 device is the DUT FPGA and mqnic1 is

the tester FPGA. For all experiments, we cross connect the 2 FP-

GAs with two 100G cables to enable 200 Gbps throughput between

them, with the exception of second step of the latency experiments.

Using the previous section commands, the tester and DUT FP-

GAs must be programmed with the 16 RPU packet gen bit file

(VCU1525_16RPU_Pktgen.bit), and the Firewall accelerator bit file

(VCU1525_16RPU_Firewall.bit) respectively. These images are suffi-

cient to carry out all of the experiments except for the Pigasus case

study which requires a separate DUT image.
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Packet forwarding throughput (Figure 7):
In two separate shells, go to host_utils/runtime and do:

1$ make do TEST=basic_fw RECV=0xffff DEV=mqnic0

2$ make do TEST=basic_pkt_gen RECV=0x0000 DEV=mqnic1 PKT_SIZE=1024

The first command loads the packet forwarding firmware on the

DUT FPGA, and the second command loads the basic packet gener-

ator that generates same size packets on the tester FPGA. For the

packet generator FPGA we set the RPUs with incoming traffic to

none (set RECV flag to 0), as we are only generating packets.

Now wait for the packets to flow for a minute to get a good

average, and stop the process on the tester FPGA using Ctrl+C. The
last print of the status table is the average values, and in the “RX

bytes” field you can read the aggregate bytes per second for the

physical and virtual Ethernet interfaces, which, on the DUT FPGA,

shows how much data could be absorbed and processed. To test

different packet sizes, you can stop both commands, and rerun them

by changing the packet size argument for the tester FPGA. This is

not necessary, but for more consistent results you can run $ make

reset_all to reset the FPGAs before each test.

For the 8 RPU performance results, you can use the same 16 RPU

setup and disable half of the clusters to achieve the same results.

On the DUT FPGA side, run the following command:

1$ make do TEST=basic_fw RECV=0x00ff ENABLE=0x00ff DEV=mqnic0

On the tester side repeat the same process for different packet sizes.

For 100 Gbps results, you can update the C code to use single port.

Packet forwarding latency (Figure 7):
To compute the forwarding latency, we timestamp the packets

before sending them from the tester FPGA, and after they arrive

back after getting forwarded in the DUT FPGA (timers in all RPUs

are synced). This values are periodically sent to the host. There is a

second step that instead of using the DUT FPGA, we cross-connect

ports of the tester FPGA to measure the base latency and deduct it

from the latency measured in the first step.

For the first step, we load the forwarding code on the DUT FPGA:

1$ make do TEST=basic_fw RECV=0xaaaa DEV=mqnic0

We enabled half of the cores for receiving packets to be consis-

tent with the single FPGA test in the next step, where half RPUs

generate packets and half receive and report the results to the host.

Throughout this experiment, we can keep the DUT FPGA running.

For the tester FPGA, from host_utils/runtime directory, run: 2$

./run_latency.sh mqnic1

This script will loop through different packet sizes, for both low-

load and maximum-load scenarios. It uses tcpdump to capture the

latency samples that are sent to the host. After the script run is

finished, you can use this command to extract latency values from

the received pcaps and calculate the average latency per packet size

and in each of the load levels: 2$ sudo ./latency_data_extractor.sh

For the second step of this experiment, we rewire the system

to make it single tester FPGA loopback. Now we run the test

script with a minor modification: 2$ ./run_latency.sh mqnic1 1l

This saves the result in a different directory. We can rerun the

latency_data_extractor.sh script as before to get the average val-

ues. The final deduction per point is done manually.

Firewall case study (number reported in Sec 7.2)
To regenerate the tester packet trace, you should run $ make gen in

fpga_src/accel/ip_matcher/python. This will create a trace based

on the firewall blacklist rules. In this trace, there are 1050 packets

which are based on the blacklist, and 4 safe packets.

For the DUT FPGA, from host_utils/runtime run:

1$ make do DEST_DIR=../../fpga_src/accel/ip_matcher/c/ TEST=firewall

RECV=0xffff DEV=mqnic0

In another shell for the tester script and in the same directory run:

2$ make do TEST=pkt_gen DEV=mqnic1 BLOCK_INTS=3 PKT_SIZE=1024

The pkt_gen code makes proper TCP/UDP packets and also can

forward traffic from the host and inject it within the rest of the

traffic. We set the BLOCK_INTS mask so that no traffic is received

from the physical Ethernet ports.

Finally, to inject the attack traffic, in another shell go to

fpga_src/accel/ip_matcher/python and run:

3$ make set_mtu DEV=mqnic1; make run DEV=mqnic1

This will inject the trace at about 5 Gbps. You can keep this packet

injector running, and similar to the forwarding throughput experi-

ment, stop the other two make do shells to observe the RX Bytes on

the DUT FPGA, and set a different packet size for the tester FPGA.

If make reset_all is used in any step, rerun the the injector script.

For application verification, on the tester FPGA you can run:

2$ make do TEST=basic_corundum_fw DEV=mqnic1 BLOCK_INTS=3

The tester FPGA will forward packets received from the host to the

DUT FPGA, and the ratio of TX to RX frames shows the drop rate.

Intrusion detection system case study (Figure 8 & 9)
To generate the traces for this test, from

fpga_src/accel/pigasus_sme/python/ run:

$ make; mv attack_pcap_* ../pcaps/

For this experiment we need to reprogram the DUT FPGA, set

the RPUs to 8 and load the RISC-V code. To get the HW reordering

results, run this from host_utils/runtime:

1$ ./loadbit.sh prog ../../bitfiles/VCU1525_8RPU_Pigasus_RR_LB.bit

1$ make reset_all

1$ make do DEST_DIR=../../fpga_src/accel/pigasus_sme/c/ TEST=pigasus2

RECV=0xffff DEV=mqnic0 RPUS=8

For the tester FPGA, in another shell run:

2$ make do TEST=pkt_gen DEV=mqnic1 BLOCK_INTS=3 PKT_SIZE=1024

Finally, for packet injection, from a third shell and from

fpga_src/accel/pigasus_sme/pcaps/ directory run:

3$ make set_mtu DEV=mqnic1; make attack DEV=mqnic1 SIZE=1024

This script will adjust the attack rate to be close to one percent.

Similar to the forwarding throughput experiment, you can pause

the make do runs and check the RX bytes on the DUT FPGA.

For SW-based reordering, change the image and firmware and

repeat the same testing process. From host_utils/runtime run:

1$ ./loadbit.sh prog ../../bitfiles/VCU1525_8RPU_Pigasus_Hash_LB.bit

1$ make reset_all

1$ make do DEST_DIR=../../fpga_src/accel/pigasus_sme/c/ TEST=pigasus

RECV=0xffff DEV=mqnic0 RPUS=8

The matched packets in this case study are sent to the host and

can be seen with tcp_dump. Figure 9 results are extracted from the

previous experiments in this subsection, by reversing the frame

rate output to get the average cycles per packet.

Note that experiments can be customized by changing the packet

size or attack traffic that is generated by the Python scripts.
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